Mark scheme

| Question | | Answer/Indicative content | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- | (

				and its resistance for 1 mark. It was common in answers for values to be merely quoted rather than used. For example, better answers (from about a fifth of candidates) that stated 'doubling the length doubles the resistance' were credited both marks.
	ii	mean for 25 cm (is recorded to 3 decimal places) and it should be recorded to one decimal place \checkmark mean for 50 cm is incorrect and it should be $16.2 \Omega \checkmark$	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \times \\ 3.3 \mathrm{a}) \end{gathered}$	Error and a solution required for each marking point. ALLOW answer in terms of sig. figs: Eg. mean for 25 cm is recorded to 4 sig. figs. - it should be recorded to 2 sig. figs. Examiner's Comments About third of answers identified clearly the mean for 25 cm was recorded to three decimal places and it should only be one. Also shown in about a fifth of answers was the mean at 50 cm should be 16.2.
	iii	75 cm attempt 3 or 18.7 (is an anomaly) \checkmark it has not been included in the mean \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \times \\ 3.2 \mathrm{a}) \end{gathered}$	Examiner's Comments There was an erratum included for this question. Virtually all candidates edited their question to include this. There was no evidence at all that any candidates were disadvantaged by this and 80% gained full marks.
	iv	straight line through the origin scores $\checkmark \checkmark$ straight line / linear relationship / proportional and not through origin scores \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \times \\ 3.1 \mathrm{a}) \end{gathered}$	ALLOW answers shown on a diagram ALLOW directly proportional $\checkmark \checkmark$ DO NOT ALLOW a curved line through origin IGNORE positive correlation (in written comments) Examiner's Comments Some sketched a straight line graph through the origin for 2 marks here. Some described it as a straight line through the origin [2] or it was directly proportional [2]. Others described the shape as a straight line or proportional [1] but did not mention the origin.
b	i	Any two from: (extra resistance due to) connecting leads too long / too thin \checkmark (extra) resistance of the croc clips / connections \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \times \\ 3.1 \mathrm{~b}) \end{gathered}$	DO NOT ALLOW idea of less resistance Eg. Crocodile clips rusted / poor conductor / bad or loose connections

		croc clip is not at 0 cm / the end of the ruler / length of resistance wire longer than intended / AW \checkmark Heating effect of wires \checkmark		IGNORE crocodile clips in wrong place unless qualified correctly. Eg. croc clips too far apart ALLOW Parallax error on meter (if it is analogue) / meter not calibrated (so resistance higher) Examiner's Comments Answers her were often vague here and examiners were seeking to award marks for clearly described errors. About a third gained one mark for either the idea of the crocodile clip not being at zero or the meter not being zeroed or calibrated.
		Any one from: make the connecting wires as short as possible $\sqrt{ }$ keep croc clips clean / solder connections \checkmark place croc clip exactly at the end of the ruler / at $0 \mathrm{~cm} / \mathrm{AW} \sqrt{ }$	$\begin{gathered} 1 \\ (\mathrm{AO} 3.3 \mathrm{~b}) \end{gathered}$	Solution needs to be consistent with an error identified in part i. OR a new specified error ALLOW: use thicker connecting wires ALLOW let wire(s) cool between readings / Securely fix croc clip / calibrate meter / avoid parallax error Examiner's Comments About a quarter gained one mark here for taking an error from part (i) and providing a solution.
		Total	11	
5		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $2.8(\mathrm{~kW})$ award 4 marks $(P=) I^{2} \times R \checkmark$ $11 \times 11 \times 23$ or $11^{2} \times 23$ or $121 \times 23 \checkmark$ $=2783 \checkmark$ Conversion to kW $=2.8 \checkmark$	4 (AO1.2) (AO2.1) (AO2.1) (AO2.1)	ALLOW 2.78 kW or $2.783 \mathrm{~kW} \checkmark \checkmark \checkmark \checkmark$ ALLOW equation in any form ALLOW ECF candidates answer to $3^{\text {rd }}$ marking point converted to kW Examiner's Comments This question required candidates to recall the equation: power $=$ current $^{2} \times$ resistance before converting their answers into kW. Out of the candidates who gained credit, most were credited with all four marks. A few candidates were only credited with one mark for converting the power output in W into kW. A significant number of candidates used an

				incorrect equation for power, most commonly using current rather than current ${ }^{2}$ When a physics question requires candidates to apply their mathematical skills they should always write down how they are answering the question. Using brief notes is and writing down intermediate calculations helps the examiner to see what the candidate is doing. A single finger error will AfL result in many candidates receiving no credit because they only write down their final answer. Marks may be available for each stage of the process, using the correct equation, rearranging the equation, substituting in correct values. Choosing to access these compensatory marks by showing workings is good examination technique.
	ii	i \quad Wind speed varies / AW \checkmark	1 (AO2.1)	ALLOW it depends on the strength of the wind / how windy it is / AW IGNORE there might not be any wind / wind changes direction / AW
	iii	(Idea of) not always enough wind / demand may exceed supply / AW \checkmark	1 (AO2.1)	ALLOW (it) may not generate enough power / energy / AW Examiner's Comments Most candidates gained full credit for Q16(d)(ii) and (d)(iii). Those who did not gain credit often provided non-specific generalised reasons about the weather or the wind turbine 'breaking'.
		Total	6	
6		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{3 8 . 2 8}(\mathrm{W})$ award 3 marks Recall (Power =) potential difference x current $\sqrt{ }$ $12 \times 3.19 \checkmark$ $(P=) 38.28(W) \checkmark$	$\left.\begin{array}{c} 3 \\ (\mathrm{AO} \\ (\mathrm{AO} \\ (\mathrm{Al} 2) \\ (\mathrm{AO} \end{array}\right)$	ALLOW correct equation in any form ALLOW 38.3 (W) or 38 (W) Examiner's Comments Candidates had to recall the equation: power $=$ potential difference x current and substitute the values provided in the question. Most candidates achieved full marks although some of the less able candidates could not recall the equation and therefore gained no credit.

				AfL Candidates would benefit from writing down the equation and their calculations rather than just their final answer so that compensatory marks may possibly be awarded.
		Total	3	
7	a	A.C. (transmitted in power lines) / (electrical/electron/particle) oscillations / AW \checkmark BUT Alternating currents/(electrical/electron/particle) oscillations produce (radio) waves/electromagnetic radiation $\checkmark \checkmark$	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \times 1.1) \end{gathered}$	Examiner's Comments This Assessment Objective 1 question assessed candidates' knowledge and understanding of how radio waves are produced. This proved to be one of the most difficult questions on the paper but also discriminated well. Only the most able candidates gained marks for relating the production of radio waves to the oscillations of electrons in the transmission lines. Misconception Common misconceptions included radio waves being produced by something in the house or because the transmission lines produced heat.
	b	(High voltage means) lower current \checkmark Less heating/heat loss/power loss/energy wasted or more useful energy transmitted / ORA $\sqrt{ }$	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \times 1.1) \end{gathered}$	IGNORE no energy losses / prevent energy loss / AW ALLOW more efficient / (wires at) lower temperature Examiner's Comments Although this question has been asked often in past GCSE Physics papers, over one quarter of candidates did not gain credit. Many gained 1 mark for the idea of less energy lost (as heat) but only the more able candidates were able to link this to higher voltages resulting in a lower current. AfL

					be measured in kilometre, km and the time in hour, h.
			Total	8	
9	a	i	LED / cells connected the wrong way around $O R \checkmark$ Voltmeter is across the battery/cells OR voltmeter should be across the LED \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \times 3.2 \mathrm{a}) \end{gathered}$	ALLOW diode IGNORE voltmeter in wrong place Examiner's Comments The majority of the candidates gained at least one mark. Vague answers such as "voltmeter is in the wrong place" did not gain credit. Higher ability candidates stated for one of the errors that the LED (or cells) were connected the wrong way around or the LED (or cells) needed to be reversed. For the other error, it was expected that the candidates would indicate that the voltmeter was not measuring the potential difference across just the LED, but across the battery. Candidates gained a mark for this error by suggesting connecting the voltmeter across the LED. Incorrect answers given by many candidates included the ammeter being in the wrong place or the variable resistor being in the wrong place. Often candidates incorrectly suggested that the order of the components mattered.
		ii	Any one from: Control/change/alter the current (in the circuit) Control/change/alter the potential difference/voltage(across the LED) \checkmark	1 (AO1.2)	DO NOT ALLOW to vary the resistan Examiner's Comments A large number of candidates answered this question by stating that the component was a variable resistor or to vary the resistance of the circuit. Few candidates answered the question in term of the purpose of the variable resistor was to vary the potential difference across the LED or vary the current through the LED (by varying the resistance in the circuit).
	b	i	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $100(\Omega)$ award 3 marks Resistance $=$ potential difference \div current $/$ $R=V \div I V$ $R=3.0 \div 0.03 \checkmark$	$\begin{gathered} 3 \\ (\mathrm{AO} 1.2) \\ (\mathrm{AO} 2.1) \end{gathered}$	Examiner's Comments The majority of the candidates were able to rearrange the given equation and substitute into the rearranged equation the correct values to give an answer of 100Ω. A very small minority of candidates used 0.3 A rather than 0.03 A . Candidates often

		$R=100(\Omega) \checkmark$	(AO2.	underline the quantities in the question, which was good practice.
		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 4.5 (C) award 4 marks Charge flow $=$ current \times time $/ Q=I \times t \checkmark$ ii $t=2.5$ minutes $=150$ seconds \checkmark $Q=0.03 \times 150 \checkmark$ $Q=4.5(C) \checkmark$	$\begin{gathered} 4 \\ \\ (\mathrm{AO} 1.2) \\ (\mathrm{AO} 1.2) \\ (\mathrm{AO} 2.1) \\ (\mathrm{AO} 2.1) \end{gathered}$	ALLOW 3 marks for an answer of 0.075 (C) (time not converted to seconds) $\checkmark \checkmark \checkmark$ Examiner's Comments In this question, higher ability candidates who did not obtain the correct answer, but showed their working, could still gain marks from their working. In this case, the equation for charge flow needed to be recalled and the time of 2.5 minutes needs to be changed to 150 seconds, before the answer could be calculated.
		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $13.5(\mathrm{~J})$ award 2 marks $\begin{aligned} & E=4.5 \times 3.0 \checkmark \\ & E=13.5(\mathrm{~J}) \checkmark \end{aligned}$	$\begin{gathered} 2 \\ (\mathrm{AO} 2.1) \\ (\mathrm{AO} 2.1) \end{gathered}$	ECF from (ii) ALLOW 14(J) Examiner's Comments Most candidates were able to multiply their answer to (ii) by 3.0 to gain the correct answer.
		Total	12	
10		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=5(.00)(\mathrm{C})$ award 3 marks (Rearrange equation) (charge $=$) energy transferred / potential difference (charge =) $200 / 40 \checkmark$ (charge $=$) $5(\mathrm{C}) \checkmark$	3 (AO1.2) (AO2.1) (AO2.1)	
		Total	3	
11	a	(Circuit) A - the total resistance is half the value of one of the resistors / less than the smallest resistor value \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \times 2.1) \end{gathered}$	Assume answer refers to circuit A unless indicated otherwise ALLOW (Circuit A) is parallel and has 2 loops/paths (for the current to flow through) / AW ALLOW higher level response i.e. correct equation for resistors in parallel ALLOW (Circuit) B is series and has only 1

		(Circuit) B - the total resistance is double the value of one of the resistors / adding the two resistances together \checkmark		loop/path (for the current to flow through) / AW ALLOW maximum of 1 mark for (circuit) A is parallel/has two loops/paths and (circuit) B is series/has one loop/path
		Any two from: (more current means) ions vibrate more / AW $\sqrt{ }$ (more current means) more electrons collide with ions (in the lattice) / AW \checkmark (more collisions mean) harder for electrons to pass (through wire/lamp) / AW \checkmark (which) increases temperature (and therefore resistance) / AW \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \times 1.1) \end{gathered}$	ALLOW atoms/particles/molecules for ions ALLOW (lamp) heats up / high(er) temperature
		Lamp, cell, ammeter and variable resistor in series \checkmark Voltmeter in parallel with the lamp \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \times 2.2) \end{gathered}$	IGNORE voltmeter in series for this mark ALLOW voltmeter in parallel with ammeter and lamp but not variable resistor
		Measure current and potential difference/voltage \checkmark Any two from: Change current/variable resistor/pd (value) \checkmark Take at least 3 sets of different V and I readings $\sqrt{ }$ Calculate the resistance using V/I or using the current and pd values / plot a graph of \checkmark against I \checkmark	$\begin{gathered} 3 \\ (\mathrm{AO} 3 \times 1.2) \end{gathered}$	ALLOW take readings on ammeter and voltmeter IGNORE repeating same V and I readings ALLOW graph of I against V / graph of I against R
		Total	9	
12		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 0.9 (A) award 2 marks (Rearrangement: $I_{p}=$) $I_{s} \times V_{s} / V_{p} \checkmark$ OR $\begin{aligned} & \left(\mathrm{I}_{\mathrm{p}}=\right) 12 \times 9.0 / 120 \checkmark \\ & \left(\mathrm{I}_{\mathrm{p}}=\right) 0.9(\mathrm{~A}) \checkmark \end{aligned}$	2 (AO1.2) (AO2.1)	
		Total	2	

